Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Appl Soft Comput ; 129: 109588, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2003877

ABSTRACT

Healthcare systems worldwide have been struggling since the beginning of the COVID-19 pandemic. The early diagnosis of this unprecedented infection has become their ultimate objective. Detecting positive patients from chest X-ray images is a quick and efficient solution for overloaded hospitals. Many studies based on deep learning (DL) techniques have shown high performance in classifying COVID-19 chest X-ray images. However, most of these studies suffer from a class imbalance problem mainly due to the limited number of COVID-19 samples. Such a problem may significantly reduce the efficiency of DL classifiers. In this work, we aim to build an accurate model that assists clinicians in the early diagnosis of COVID-19 using balanced data. To this end, we trained six state-of-the-art convolutional neural networks (CNNs) via transfer learning (TL) on three different COVID-19 datasets. The models were developed to perform a multi-classification task that distinguishes between COVID-19, normal, and viral pneumonia cases. To address the class imbalance issue, we first investigated the Weighted Categorical Loss (WCL) and then the Synthetic Minority Oversampling Technique (SMOTE) on each dataset separately. After a comparative study of the obtained results, we selected the model that achieved high classification results in terms of accuracy, sensitivity, specificity, precision, F1 score, and AUC compared to other recent works. DenseNet201 and VGG-19 claimed the best scores. With an accuracy of 98.87%, an F1_Score of 98.21%, a sensitivity of 98.86%, a specificity of 99.43%, a precision of 100%, and an AUC of 99.15%, the WCL combined with CheXNet outperformed the other examined models.

2.
Nonlinear Dyn ; 106(2): 1453-1475, 2021.
Article in English | MEDLINE | ID: covidwho-1240049

ABSTRACT

Nowadays, humanity is facing one of the most dangerous pandemics known as COVID-19. Due to its high inter-person contagiousness, COVID-19 is rapidly spreading across the world. Positive patients are often suffering from different symptoms that can vary from mild to severe including cough, fever, sore throat, and body aches. In more dire cases, infected patients can experience severe symptoms that can cause breathing difficulties which lead to stern organ failure and die. The medical corps all over the world are overloaded because of the exponentially myriad number of contagions. Therefore, screening for the disease becomes overwrought with the limited tools of test. Additionally, test results may take a long time to acquire, leaving behind a higher potential for the prevalence of the virus among other individuals by the patients. To reduce the chances of infection, we suggest a prediction model that distinguishes the infected COVID-19 cases based on clinical symptoms and features. This model can be helpful for citizens to catch their infection without the need for visiting the hospital. Also, it helps the medical staff in triaging patients in case of a deficiency of medical amenities. In this paper, we use the non-dominated sorting genetic algorithm (NSGA-II) to select the interesting features by finding the best trade-offs between two conflicting objectives: minimizing the number of features and maximizing the weights of selected features. Then, a classification phase is conducted using an AdaBoost classifier. The proposed model is evaluated using two different datasets. To maximize results, we performed a natural selection of hyper-parameters of the classifier using the genetic algorithm. The obtained results prove the efficiency of NSGA-II as a feature selection algorithm combined with AdaBoost classifier. It exhibits higher classification results that outperformed the existing methods.

SELECTION OF CITATIONS
SEARCH DETAIL